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FOREWORD

As the spPed of air-to-water missiles increases, the water
impact decelerations which these missiles experience at water entry
become incrgasingly important to structural design. For example,
at low speeds of even a few hundred feet per second, decele-atc::s
of several hundred gravitational units are common. At these ent-y
speeds, and increasingly more so as the speeds increase, the com-
pressibility of water has important influence on the peak impacG
loads and decelerations.

The research reported here considers the effect of water
compressibility In the fundamental case of vertical impact of
round-nosed missiles, by applying mathematical techniques pre.-
viously used only in supersonic aerodynamics.

This work h~s been supported jointly by the Office of Naval
Research (Project TOWER: Treatise on Water-Entry Research) and
this Station under Local Project 701, from 1950 to 1954.

This report is transmitted tor information only. It does not
repr,,'sent the official views or final judgment of this Station.
It presents information reJeased at the working level that is still
subject to modification and withdrawal.

D. W. STEEL, Acting Head
Research Division

Released under
the autho:'ity of:

D. W. SIEEL, Head
Underwater Ordnance Department
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PaSTRACT

Compressibility effects during the initial impect .nase of
air-to-water missiles are presented in Che form of a review of ex-
isting theoretical and experimental work conducted at the U. S.
Naval Ordnance Test Stcaton dur-ang the last few years.

The theoretical section of the report presents three differ-
ent approaches to the problem of finding the pressures which act
upon the missile when it strikes the water with a velocity much
lower than the speed of sound in water, taking into account the
compressibility of the water.

The experimental section of the report presents results ob-
tained in measuring the impact pressure of missiles or spheres
striking the water surface.
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INTRODUCTION

Compressibility effects during the first instants of water-
entry impact of an air-to-water missile are of interest both from
a structural and a ballistic viewpoint. During the initial impact,
the effects of compressibility are important, whereas during the
latter phases of entry the incompressible theory is adequate for
most proolems. It should be emphasized that the amount of experi-
mental data concerning the compressible phenomenon is very limited,
so that the treatment of compressible effects is essentially a
theoretical one at the present time.

Extremely high pressures can be developed on the nose of a
missile at water impact. If a flat, rigid disk is considered as
striking a water surface normally, the instantaneous pressure dae
to the compression wave set up in the water is p = ecV (Appendix A)
w ere Q is the density of the water, c is the velocity of sound in

e water, and V is the normal velocity of the disk. If this prob-
lem is considered from the incompressible viewpoint, the pressure
6 impact has an infinite value. In the case of a sphere striking

a water surface normally, there is a small area over which such a
shock will exist for a finite interval during which the intersec-
tion of the sphere with the water surface expands faster than the
velocity of sound in water. For low entry velocities, V <c, the
time during which the rate of growth of the wetted-surface radius
is supersonic is very small. Hence for most cases of water entry,
the impact or shock phase occurs during a very short interval,
usually of the order of a few microseconds. This factor alone
makes experimenal work very difficult to perform since instruments
with very rapid response are required in order to measure events
occurring during a short interval. In addition, there are indica-
tions of air trapped between the missile and the water which acts
as a cushion in its effects on the shock phase. Since the pres-
sure plugs in the missile have a finite diameter, any pressure
measurement indicates an averaged value. The phenomenon of trapped
air may also delay and reduce the peak pressures.

The structural effect of the shock phase is of interest in
connection with the deformation of the nose of the missile, but
it is not well known. The structural effect is also of theoretical
interest since it combines hydrodynamic and elasticity theory ir
the solution of the problem.

1
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A- one, part of th, over-all problem of water entry shock, the
Impact phase 1; Inportant since it is the first to occur and the
subsequent behavlor of the missile is dependent on what happens
during this phase. The fact that the compressibility effects are
more pronounced during this phase means that only theoretical and
experimental work of a fundamental nature can reveal their relative
importance.

The incompressible theory of water entry of blunt bodies has
been e.tensively developed by Shiffman and Spencer (Ref. 1) and by
others. Based on this theory, the pressure distribution on a
sphere entering water vertically has been determined at the Naval
Ordnance Test Station (NOTS), and the theoretical results have been
checked experimentally through pressure measurements with piezoelec-
tric gages at the stagnation point of a 12-inch.diameter spheie.

Incompressible theory, however, predicts an infinite pressure
at the stagnation point of a blunt body when it comes in contact
with the water surface. Actually, it is expected that during the
impact phase, pressures of the order of the shock or piston-
inpulsive pressure ecV are experienced for a few microseconds.
Since a theoretical prediction of the pressures during this phase
requires that account be taken of the compressibility of the water,
the formulation of this problem and several solutions will be con-
sidered. The problem was first stated by L. Trilling of this Sta-
tion, who based his formulation on the theory of weak waves and
obtained a solution to the two-space dimensional problem after mak-
ing several assumptions. The problem was later taken up at NOTS by
R. H. Owens, who reformulated the problem using the more general
Reisz method, but mace no attempt at a detailed solution. The ver-
tical .,upact of a sphere on the water surface was considered at
NOTS by R. H. Korkegi, using the retarded potential solution as
suggested by F. E. Marble, consultant to this Station, from which
actual pressure distributions were obtained.

TRILLING'S SOLUTION FOR TWO-SPACE DIMENSIONS

Since this report deals with the first contact of a striking
body with a plane water surface where the compressibility of the
water is to be considered, the problem resolves itself into one
concerning the propagation of a pressure wave of finite amplitude
into the water. This involves considerations in terms of the dy-
namics of a compressible liquid.

When a body strikes a water surface at a velocity V where

IV<<l (c is the velocity of sound in watbe), the theory of weak

2
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wavas (Ref. 2) may be applied to compute its motion. The flow is
irrolltional and isentropic, and the velocity potential satisfies
tho wave equation up to te:rms of the order of V2 /c 2 . The boundary
conditions are applied on the undisturbed free surface, and the
displacement of the body is neglected. The effect of splash is
ignored.

The velocity potential V satisfSes the e vation

() - C '7 O=0

The velocity V and the pressure p are determined by

(2) P=et

Just before impact, the fluid is at rest or

Since the differential equation and the boundary conditions have
been linearized, the solutions for the vertical and horizontal
components of motion may be found separately. In tMs report on1j
the vertical comporent will be considered.

The boundary condition for the vertical component is

(4) =' 0, 5'4
= V I

where S is the wetted surface of the body and S' is the horizontal
free surface of the liquid. The problem (Eq. 1 - 4) is similar to
that of a lifting three-dimensional wing in a steady supersonic
stream for the case of two-space dimensions (Ref. 3, P. 73): and
the methods of supersonic airfoil theorj may be adapted to solve it.

W hen a two-dimensional body strikes a plane water surface at
a constant velocity V, its wetted surface i4<xe(t), grows at a
rat. proportional to the slope of the body section since
dxe/dy = Xe/v. The potential function satisfies the equation

' ( V

with the initial condition

tP(O),X/ Y)
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The vertical component of motion satisfies the boundary conditions

K.lX 0 X> xe)

0_ ,0 X < K(jtl

Figure 1 shows the growth of the strip xe(t) in the plane y = 0.
et Xgt)

I //
/ I[

8''

FIG. 1.

The lines AB, AB' are the traces of the characteristic Mach cone
tangent to x(t) in the plane y = 0. Since the equation of motion
is hyperbolic with constant leading coefficients, any disturbance
travels in the fluid field at the constant velocity c. In the re-
gion B' OB, the edge of S moves outward at a velocity ie>C, and
therefore, in the region BOWC, no point on the body surface can
be influenced by the fact thet the body has finite width. The
pressure in that region can be determined Crom onc-dimensional
wave theory (Ref. 3, p. 41) and is

and since V(<c and Xe_?c for this domain, the pressure can be ap-
proximated very closely by

p~sec V

To investigate the flow in reglon, 6BO, OB'C'it is convenient
to approximate the curve OB by a straight line whose angle 9 with
the horizontal x-axis is small, since tan 01 < V. The cuive BD is

C
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,ipprouImate l by i straight line whose angle with the vertical (ct)
Ixs 13 0.. Th,. point PI l: any convenient point on xo(t). The
or,gin of' tho coortlihiato SylitoLm is now shiftod to B. The flow In
iO, r,jon CBC Is conical in the sense Introduced by Bunemann
,,, i,). It is ehar.ctr1-od by tho absonce of any length parm-
-i , II be Pluation of motion o" tie goometry o1 the field. Thm
, Ily ad pressure depenu oril on tho purumoteor f = X/6t and
, ' * In the plane, the Mueai iii,-o frCom B 3ppoUT'fl 0a the

I Icit. The boundary BD ii a segmen L ,r, hn f Uxii q'he
(f ountact of the, Muioh con. from B wItl| thn Itit, wnvot, (rom
the points FF' or, 1:w unit circle (Fig. :'), :A I o, at

= e') : " ?;(F')= :

i .,|

, ,

'f

/

FIO,

The differentlu] equation ftr Lh prossuria, ,All. ha' 'I Ly Ihtroduclng p( f, ) Into t~he wave nlUT Iti, Eq ,).io~ , I, f 1i Y;! -ti

to polar coordlhuta:.' U-, r In the Ji Atine is
aC
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The angular coordinate r'is now left unchanged, while terda
coordinate is transformed as suggested by Tchaplygine (Ref. 3,
p. 28 )

(6)

The un~it circle and the orIgin remain invariant and rays from the
origin are transformed into themselves, although not point by point.
In particular, the edge D which was situated at the poift = tan&
ii tniu defined by

In he , rpt,.. tIht, pressure and the velocity componentssaif

The- iitef'o 111is 1), li, v aj'v therefore real part., of analytic functions
P~, 11, V of' th. -ooMplufx viahabi. Sei'l. Since v is constant
at li ~ 'V1111.1hos 1,here- It follows from the momentum equation
I'll::. billu, frong tho roal axisfrm taisrn..

an~d mbeseofth equ alnc o OngFlesuner e Tch/ no di transe

I'Io affect the pressure field, so that the pressure vanishes there.
Sliwe' the pressure is continuous in the field, the pressure along
FOP' I-, the sane as behind the waves frmIta sp=c ln
I'P andii -ecV along OF'. To slimplify conditions along the real axis,
IIn convenient to introduce the homographic transformation

whieh leaves the unit circle and the real axis invcriant, and puts
"he point D at the origin. The points FF' are now located at

jVV / ~ l = k 7a ±i e&2 =e- _

Alo0ng the positive real w-axis p is zero, and since it is harmonicIi must be antisymmetric with respect to the real axis. With re-
spect to the negative -al w-axils, it is symmetric by virtue of
Schwartz's reflection principle, since p* vanishes there. Thej w-plane (Fig. 3) is therefore a double-sheeted Riemann surface with

6
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a cut along CD. A reflection of P(w) in CD defines P(w) in the
lower sheet. The solution in the physical plane has a discontinu-
ity along CD, where the body can support a pressure discontinuity,
but it is continuous in the fluid, along the positive real axis.

F

w-plane

C D C

FIG. 3.

If the doutile-sheeted surface is unwound by the transformation
-(w-" the points F. F' are mapped into four points -

and the boundary conditions for P () are given on the unit -

circle as follows

g P()=- V) < r <

The function which satisfies these conditions is (Ref. 3, P. 79)

/7-

The pressure distribution on the body surface is found by retracing
back through the transformations in Eq. 8, 7, and 6. The result
for small , (tan 9 i,01 ) is

7
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where

jjZ
#x

Several factors restrict the usefulness of this solution.
First, &9e bcundary of the body has been approximated by straight
line segments. For this approximation to be reasonable it is nec-
essary to make these segments very short. In this connection
Evvard's method (Ref. 5) based on the appropriate fundamental solu-
tion of the wave equation might be used in order to -liminate ap-
proximation of the boundary by straight line segments. Coupled to
this restriction is the fact that to extend the solution any fur-
ther requires the use of complicated methods of superimposing other
solutions and then matching boundary conditions. Because of the
complexities of such a solution and the questionable accuracy of
the solution already at hand, such an attempt does not seem to be
Justified. Since the two-space dimensional case is essentially of
academic interest, it is worth noting that the problem can be
treated by using the fundamental solution of the wave equation.
This has been done by R. H. Owens using Riesz's method (Ref. 6).
It should be noted here that the retarded potential cannot be for-
mulated in two dimensions because of Huygen's principle.

Riesz'3 method is presented in Appendix B. The advantage of
the method is that it clearly shows what boundary and initial con-
ditions are necessary to solve a problem in hyperbolic differential
equati-s. Recalling that in m dimensions the hyperbolic distance
R is gi -n by

~ X)

and since

R2 -m satisfies this m-dimensional wave equation. However, an at-
tempt to build up a solutun irom this so-called fundamental solu-
tion fails when m > 3 because any integral involving R2 -P diverges.
However, an integral of Rm+2 -m where m > m - 4 will converge (the
use of analytic continuation is the basis for Riesz's method) and

8
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its limit as i-O may be ccnsidered as the analytic continuation of
the integral of Rc+2 -m into the domain O.mtm - 4, i.e., it de-
fines the integral of R2-m. In order to perform this analytic con-
tinuation it iL necessary to integrate by parts. However, the in-
tegral is multiple, and 3reen's theorem is used, which corresponds
.o integration by parts. For w = 4 the familiar retarded potential
solution is obtained. However this can be done more simply, and
constitutes the basis for the formulation of the problem by R. H.
Korkegi.

KORKEGI'S SOLUTION FOR THREE-SPACE DIMENSIONS

The formulation of the problem is again essentially that of
L. Trilling. The first few instants of-water entry during which
only a very small part of the sphere is submerged will be consid-
ered. The depth of penetration is small compared to the radius of
the wetted area; hence, to the order of approximation of this anal-
ysis, boundary conditions will be satisfied in the plane of the
undisturbed water surface rather than on the curved surface of the
sphere. Since the surface of contact of sphere and water is the
only disturbance present, the analytic problem is that of deter-
mining the flow field that is due to an expanding disk of disturb-
ances. In addition, the problei will be restricted to considering
the time during which the rate af expansion of the wetted surface

exceeds the rate of wave propagation in water and the free surface
of the water beyond the area of contact is undisturbed. The fol-
lowing assumptions are made:

1. That the flow is irrotational and isentropic.

2. That the vwlocity of the body V and the rate of wave prop-
agation in water c are constant.

3. That V/c is much smaller than unity.

4. That boundary conditions are satisfied in the plane of the
undisturbed water surface.

5. That the sphere is considered rigid.

The condition of irrotationality,VxU = 0, is identically satisfied
by A potential such that U =71. (U is the velocity vector in the
flow field). With a system of coordinates x, y, R (or r, a,,
fixed in space, the analytic problem consists of he following par-
tial differential equation, boundary, and initial conditions. Fig-
ure 4 shows the area of contact of sp.here and water represented by
a disk.

9
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(8) \7-Y,- 11ca 'Pe =0o

(9a) V( Y, 0, b) =o 0 r>

(9b) &- 0 ) >

(9c) kjV< ee

where

R(t) = the instantaneous radius of the disk

)(-Y,- = coordinates of the field point

j )5 = coordinates of a variable point in space

= fixed time

= variable time

FIG. 4.

A fundamental solution of the wave equation (Eq. 8) is the
simple source

10
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It represents the instantaneous potential at time t at a
Pi-pld point a distance r, away from a source of strength f. Since
the wave equation is linear, solutions can be constructed by super-
imposing simple sources. In particular, the solution for a dis-
tribution of point sources in the planet = 0 is

,4,
/4 rl

where

It is found that the instantaneous pulse strength f is directly
proportional to the instantaneous and local value of .. This is
shown by Lagerstrom (Appendix C) and yields

Za/7" 0

Thus, the solution can be written in terms of a retarded potential
as follows

(10a)y,,)-/7 (L z4 )

or c " ~;-

where

The limits of integration of Eq. 10b are obtained as follows:
if there are no disturbances prior to time 0 = , then, at time
2= t, the field point P (Fig. 5), is influenced by disturbances
occurring within a sphere of radius clrabout P; since disturbances
are limited to the plane 0 = , the region of integration Is the
circular area defined by the intersection of the sphere ct with
the plane 4 = 0. The integrand of Eq. lOa and b is determined by
the boundary conditions of the problem.

I
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-, p , z f"e)
FIG. 5.

For a sphere of radius a entering water with a vertical veloc-
ity V the inrtantaneous radius of the wetted surface for small
depths of pL,,rration is approximately (see Fig. 6)

-vz
FIG. 6.

(11) Rib

The rate of growth of the radius of the wetted area is hence

(12) , )= - 7

When the rate. of growth becomes sonic R(tc) = c, the time at which
the rate of growth is sonic is

(13) a- -

12



NAVORD REPORT 3523

Since this analysis will hold for times during which the rate of
growth is supersonic, it must be required that

CL V

It is convenient to use dimensionless variables (denoted by primes)
as follows

(14fa) l?)a .~ 

(14b) i

The dimensionless rate of growth becomes the Mach number

C

Now the boundary conditions (Eq. 9) are applied to the re-
tarded potentia] solution (Eq. lOa) in order to determine the po-
tential at an arbitrary field point. Since the problem is axially
symmetric, no generality is "'st by choosing a point in the verti-
cal plane y = 0. Because of ;he time dependency involved, not all
pulses emitted in the circular region of integration illustrated
tn Fig. 5 are felt at the field point P at time t. Hence it is
necessary to determine the re n of integration within the cir-
cular area of radius '/CtZ_ ' with pulses of strength . = V
(Eq. 9c) which will contribute to the potential at P (x, 0, Sa, 0.
This region is bounded by the locus of the points of intersection
of the instantaneous Mach cone (see Fig. 7a) with the expanding
disk (representing the wetted surface of the sphere) for all times
between T = 0 and r= t - %/c. From Fig. 7a it can be seen that
pulses emitted for 0<2 2, and 1 have not yet reached P at
time t; only those emitted for r, ?<rhave influence. Hence, the
area in the plane z = 0 in which disturbances emitted will reach
the field point P(x, 0, s) at time t is bounded by the curve ()
(Fig. 7b) given by the equation

where

13
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FIG. 7a.

yJ,1

X / 9

FIG. 7b.
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This equation can be expressed in dimensionless form as fol-
lows z e

where t'=taV and all space quantities are reduced to dimension-

less form through division by !Y, that is, ( X v

Solving for i ation obtai d for the curve bounding
the area of integration as follows

(15) 1 "")

where
7L I'

Hence, from the retarded potential solution of the wave equation
(Eq. 8) and the boundary conditions (Eq. 9b and c), the potential
at an arbitrary field point (x,O,6) at time t, given in terms of
dimensionless coordinates, is

where isgie/,n "n ~e ~h

') is given in Eq. 15 and the limits /and /are Lhe
real roots of the quartic equation obtained by setting f2 ( =O
In dimensional coordinates the potential is

(17) 4s

where

The region of influence of disturbances due to contact of the
sphere with the water surface is sketched in Fig. 8. The dashed
line represents the front of the compression wave moving out into
the fluid from the disturbed region.

14
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\ egion of nfluence

K YO From Eq. 17

Wave ont

FIG. 8.

Due to the complexity of its limits, the double integral for
the potential (Eq. 17) does not lend itself to an exact solution
for an arbitrary field point. For x = 0, however, the potential
and the pressure can be readily evaluated. Ir this case the area
of integration degenerates to a circle about the origin. The result
is given in terms of dimensionless space and time coordinates

(18) P(O 0"-a t)

Fortunately, the integral for the potential can be simplified
for the evaluation of the pressure distribution on the wetted sur-
face of the sphere. Since the integrand is a continuous function
of I and for every value of z, the potential in the plane z 0 0
can be directly evaluated.

Now polar coozdinates are introduced in the xy-plane (see
Fig. 5) with the field point P(r,O,t) as origin

(0= I -x'

Since r, - e as s 0 0, the retarded potential solution
(Eq. lOb) becomes

(19) Wro~ 9 i-

where P i_ -

15
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Because of axial symmetry, the potential is independent of m (see
Fig. 4). The domain of dependence of P(r,O,t) in the xy-plane is
the area bounded by the circle of radius ct about P. However, as
for the case of an arbitrary field point, only those pulses inside
the area defined by (l (n) will contribute to the potential at
P(r,O,t). (Figure 9 shows the area of integration for the point
P(r,O) at time t.)

L

L/ /

'x
- -

FIG. 9.

This can be expressed mathematically as follows

Hence, Eq. 19 becomes

(21) y( o4)/

16
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The equation giving the boundary of the area of integration is
(see Fig. 9))~~ -" =, 0)) C0 ( 5,:

) /-re6 q)c:s -r2

Since the square of the instantaneous radius of the disk (wetted
surface) is

In dimensionless coordinates is obtained

(22) (0 g) "9 L/- r '6' (*5, 0) ] L

where

Since r 2/for supersonic expansion of the disk, for
O.-:!71T, i.e., the area of integration always encloses the point

P(r,O,t) on the disk.

For the two limiting cases of a point first at the center of
the disk (r' = 0), and second on the edge (r' = t'), the area of
integration degenerates to a circle of radius -1 +
and then vanishes, respectively.

The equation for the potential at a point r on the disk, given
in terms of dimensionless quantities is hence

2o 3 /JL r/

To the order of approximation of this analysis, the pressure is
given by

17
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Hence, the pressure corresponding to the potential of Eq. 23, and
given in terms of the shock pressure, is

'01-Po-, ) _ / __________

ec hr -iT 1 7

This is a complete elliptic integral of the first kind, which can

be reduced to the Legendre standard form (see Appendix D) yielding

(26) _ _ _ _ _ - A (' 1 ¢ T ,e cV¢ _____________

- 14fr'J I~ .t)
where

-47,, ')- r'JJ = ",'ifrn't.9

Values of the elliptic integral J(c) are tab-:?.ated by Jahnke and
Emde (Ref. 7).

The time history of the pressure distribution on the sphere
during impact is plottg d in terms of the dimensionless radius of
the wetted area r' = (actually the projection of the wetted

area in the plane of the undisturbed water surface), with the di-
mensionless time ti=t/ V as a parameter in Fig. 1.ie"

It is to be recalled that this analysis is valid only for
times during which the rate of expansion of the wetced area of the
sphere exceeds the speed of wave propagation in water, i.e., for
t < aV or t' < 1. For this case the free surface of the water

2c7
beyond the area of contact is undisturbed. If the expansion rate
were less than the speed of wave propagation, compression waves
would propagate outward from the edge of the area of contact and
disturb the free surface inside the wave front (mathematically
this means that 10 for R(t)< r<aV + ct).

18
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3.0j

I I

'.8 Time Parameter t' =tI

Dimensionless Wetted '
Radius r' r/ay

2.4

2.0--

Envelope of Peak Pressures

'.61 _--

1.,9

'=0.t 0. t' 0.

0. 0.".4 o60.".

ri

F. 1.TmHitroftePesrDitbu iAln

the Radius of the Wetted Surface of a Sphere During the
First Few Instants of Impact With a Plane Water Surface.
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From incompressible theory the pressure at the stagnation
point of a sphere is given in terms of the dynamic pressure by
(Ref. 1)

As a function of the dimensionless time parameter t'=, the

incompressible pressure can be expressed in terms of the shock
pressure as follows

(27) -
ecv -

From Eq. 25 the compressible stagnation pressure (r' = 0) is

(28) _ /
Ccv

Equation 27 clearly shows the nature of the singularity of the
incompressible pressure foimula at the instant of impact (t' = O)
while Eq. 28 indicates that the compressible pressure formula has
the finite valueecV.

Equations 28 and 29 are plotted in Fig. 11, with a predicted
curve for the compressible pressure when the rate of expansion of
the wetted surface of the sphere is subsonic. With increasing
time or a decreasing rate of expansion, it is expected that the
compressible and incompressible pressures approach each other.
When the rate u expansion of the wetted surface becomes much
smaller than the speed of wave propagation in water, the effects
of compressibility are negligible, hence, incompressibility theory
is quite adequate for pressure predictions.

EXPERIMENTAL WORK

The theoretical work at this Station has been concerned with
the entry of a rigid body into water and the subsequent motion of
the fluid, taking into account the compressibility of the water.
No account of the fact that an actual object is not strictly rigid
but deformable has been taken in any of the theoretical work. Yet
the structural effects, such as deformation of the nose at impact
or even failure at high entry velocities, is of extreme practical
importance.
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1.54 -,-
-Incompressible Theory

_ -Compressible Theory Olid
for tl' I)

Predicted Compressible
The3ry Accounting for
Disturbed Free Surface

Dimensionless Time ,A12

_-- --- 4

0.5-- -

t't

0 1 2 ti 3 5

FIG. 11. Comparison of the Compressible and Incompressible
Pressure; Time History at the Stagnation Point of a Sphere.
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The difficulties which arise in any experimental efforts to
isolate the compressibility effects are fairly well recognized.
The fact that the missile acts as a compressible medium has been
noted above. It is also true that the water surface is not a
strictly smooth plane. in additioa, there is evidence that air is
entrapped between the bo y and the water. All these factors make
it difficilt to separate the true compressibility effect of the
water and modify all experimental results. Most of the experimen-
tal work yields order-of-magnitude results which may act as guides
to the actual design of missiles and future theoretical ana exper-
imental work.

The normal component of force at the point of impact for a
blunt-nosed missile entering the water at an angle P arises from
the pressureecVsinL where V sing is the velocity of the missile
normal to the water surface. In order to study the peak impact
pressures when the nose of a projectile first comes in contact
with the water, a set of pressure plugs were distributed over the
nose of a hemispherically shaped missile (Ref. 8). The plugs arc
thin phosphor-bronze diaphragms supported peripherally on an accu-
rately reamed shoulder. For entry velocities cf 500 fps or more
the plugs used were 0.02 inch thick and 0.250 inch in diameter.
Application of a sufficiently large pressure gives the diaphragm
a permanent set. The pressure piugs were calibrated statically.
Figure 11 of Ref. 8 shows a plot of the pressure at the impact
point as a function of velocity. The agreement with that calcu-
lated by the formulaecV sinP is very good, considering the fas-t
that the static calibration of the plugs was used. It As true
that the natural frequency of the membrane is theoretically high.
For these membranes the frequency should be 25,000 cps. The eff3c-
tive frequency as an inelastic, deformable membrane was not meas-
ured, so the true dynamic response is not known but is estimated
to be about 5,000 cps. For a hemispherical head with a radius
a of 1 foot, entry velocity V of 500 fps, and c of 4,800 fps, the
duration of the ecV pressure is roughly twice the time at which
the growth of the radius of the wetted area of the sphere is just
sonic or t = % = 22 times 10-6 second. This is because of the

reflection of the pressure wave from the point where the velocity
of the contact point is just equal to c. The analogy for the
pressure plug is a spring-mass system which can move only in one
direction just as though the mass were restricted by rachet.
Hence the time for one-fourth cycle of the motion of the membrane
needs to be considered. For 5,000 cps this time is t = 50 micro-
seconds, as compared to a duration ofecV of t = 22 microseconds.
Therefore the plug should not be deformed as much as the static
calibration would indicate. However, as an order of magnitude,
the check is very good.
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A laboratory setup for obtaining pressure-tme measurements
has been established at NOTS by C. R. Nisewanger (Ref. 9).
Nlisewanger' method consists of making direct pressure measure-
ments on bodies by means of electromechanical transducers (gages)
set flush into the surface of the bodies. The experimental body
is a 12-inch-diameter hollow dural hemisphere mounted on a suitable
carriage and guided during a fall of 11 feet into a tank of water
by two vertical rails. The velocity at impact is about 24 fps.

For these values of diameter and velocity the ecV pressure to
be expected would be about 1,600 psi, and have a duration of about
1/2 microsecond. The resonant frequency of the gages used here is
105 cps. Thus even though the resonant frequency of the gages is
much higher than that of the pressure plugs, the lower entry veloc-
ities give a ecV pressure duratici of only 1/2 ml rosecond. For a
1/2-inch-diameter gage the maximum pressure obtained was 120 psi,
as compared to the theoretical value of 1,600 psi. However, this
experimental value of pressure was registered nearly 13 micro-
seconds after the initial impact, which means that the peak pres-
sure might have been modified considerably by trapped air. It
should be emphasized that the experimental work was done with
great care and precision. The presence of trapped air seems to
be indicated by this experimental procedure.
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Appendix A
/ /

VON KARMAN'S DERIVATION

A simple derivation for the impulsive piston pressure p =ecV

is given by Von Karman (Ref. 10). When a flat plate strikes a water

surface, the pressure will have an infinite value if the water is

considered as incompressible, since a finite mass of water is &iven

a certain amount of kinetic energy in zeo time.

It is possible to obtain an approximate value for the maximum

pressure taking compressibility into account in the following man-

ner: The propagation of momentary increase of pressure in a fluid

takes place at the speed of sound in the fluid, designated by c.

Therefore the mass of fluid accelerated in the time dt ise Scdt,

where S is the surface of the fluid struck by the body. Since the

velocity of this mass is increased from zero to V in the time dt,

the force acting iseScV and the pressure is p = cV,
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Appendix B

OWENS' TREATMENT OF THE
TWO-SPACE DIMENSION PROBLEM

BY RIESZ'S METHOD

DEFINITIONS, CONVENTIONS, AND THEOREMS

The Riesz method is presented in detail in Ref. 6. The advan-

tage of this method is that it shows clearly which boundary and

initial conditions are needed to solve a problem in hyperbolic

equations. As a preliminary, the def'initions, conventions, and

theorems necessary for the application of Riesz's method arc pre-

seihted.

Definition: Rieman.-Liouville integral (R-L integral)

-;

where m is a complex number. This operator associates to each

function f(x), defined for x>o, a new function lcf(x) defined

in the same domain.

'emma: For fixed, bounded f with n continuous derivatives,

where n is arbitrary, and for fixed x, Iaf is an analytic Zunation

of M.

Proof: 1l1f as defined converges for /e >0 and is analytic

in a. So when Ife a. >0 integration by parts yields
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(BI) fj /7- * J(. )j,, . # .

However, this expression equals the original expression in feet

but it converges for fe.>-/ . The principle of analytic contin-

uation allows the use of Eq. B1 as the definition of If in ,

gea 6 _/, for it is necessary to show only that the old and new

expressions are analytic in a and that they agree in a common do-

main. In the same way 1l'f can be defined for kexQ-7since repeated

integration by parts will allow extension of the domain of analyt-

icity (I unit to the left each time) throughout the complex plane.

The use of analytic continuation is the basis of Riesz's

method and hence the reason for including the previous proof.

Properties of If:

2 . " -,

4, T~C j4 , ( *J) t- c +  x
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X4 /__ fe ' -

8. For special a, i.e., a = 0 or -n, laf depends only on the

values of f( f) in an arbitrarily small neighb(rhood of f = x,

but for general a, Ilf depends on the whole range of values of

f: ffor 0 < f-<x,

Theorem: If n ,j . arbitrary, then r -

Application: Abel's in*-egr- . equation is/-, x 9t)'< ) f , o<i

The problem is to find g(x) if f(x) is known. The equation can be

written

_ (1-7)-'/3:f.- i76',-&: J : V:) 41g =: <,->'

o:
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Since 1-3,9 one gets

- / / .)- ,

on using the last theorem again since >,. From property 7
/ d-

P/,€) clx P4('-,) d4 ~' J

Since

one obtains

7-

which is the required solution.

Deftnition: The Riesz integral in m independent variables.

0 3 2 >-) ( f , 7' P ) = /C --( 4 )} " , V 4

where

f = f(xl: x2, ... , xm), i.e., m independent variables, the

superscripts being distinguishing marks, not exponents.

D = the m-dimensional volume bounded by the m-l-dimensional

hypercone with apex at P(xl, x2, .... xm) whose equa-

tion is R = 0 and xK- ' J>O
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R = the hyperbolic distance of the arbitrary point

from P, given by R2 
=

dVm , an m-dimensional volume element

Hm(a) = a constant defined by

(B3) /T)= ff /7~

Remarks: Imf depends on m, f, P (corresponding to the upper

limit of the R-L integral) and on a domain D (corresponding to in-

terval 0, x of the R-L integral). The volume D is bounded by the

hypercone and the hyperplane = 0. Imf reduces to the R-L inte-

gral for m = 1. Lastly, the Riesz integral is m-fold, but by in-

troducing mean values for f it can be reduced tr, a double integral.

Theorem:

In particular this is true even if D is a small part of a cone in-

cluding the apex P. This is analogous to the R-L integral in which

I0f depends on values of f(F ) only, in a small neighborhood of-n

Theorem: /

W5) 0 e)
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where m(CA) is a mean value of f. The essential point is that
this formula represents 2f in terms of a simple R-L Integral over

m

the interval (0,1).

Theorem:

where D is an m-dimensional volume and L is an (m - l)-dimensional

volume, i.e., the "surface" enclosing D. Differentiation in the

co-normal direction is represented by athe normal being the

outward-drawn normal to the "surface." The m-dimensional wave

operator defined below is represented by 0.,, This is Green's

theorem in hyperbolic geometry.

If the components of the normal are given by

55 =?2 ,,')n"a) the co-normal components are defined by

cOR= (2l, -a). ,,- 91 ) I This follows from the hyperbolic

metric associated with the hyperbolic differential equation. On

the plane = , the normal has components .F=-' O 'i
hec ',7 ) so that On the plane

%) " =5)- ,Is~,,2,P) provided x2 /9 (i.e., provided

the apex of the cone Is on the positive side of the plane 12_ )

so that the normal extends in the negative direction (see sketch

in next section).- Hence coR ~ io and~

The expression for I__ on the "curved surface" of the cone will not

be needed.
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Recalling that in m-dimensions R
2  a Z

ne can compute 7-

- K--j~-;Z)P from which it follows that for a= 0, L ,, =,o

and hence R2-m satisfies this m-dimensional wave equation (note

that Om is defined above). An attempt to build up a solution from

this so-called fundamental solution fails when m>3 because any in-

tegral involving R2 "m diverges. However an integral of Rm+2-m where

OPIM-4will converge, and its limit as 6r-x may be considered as

the analytic continuation of 'he integral of Rm+2-m into the domain

0! x -'M-4, that is, it defines the integral of R2 -m. This

analytic continuation is obtained by integration by parts as done

in the continuation of the simpls R-L integral. How'ver, this in-

volves a multiple integral, and the tool available is Green's

theorem, the use of which corresponds to integration by parts.

TWC-SPACE DIMENSIONAL CASE

Riesz's method for m = 3 will be applied as illustrated in

Fig. 12 to give physical meaning to the process. The case m = 4

will be treated in the language of m = 3.

Characteristic cone, vertex at P(ct, y, x):

"Reflected" cone, vertex at F(ct, - y, x):

"Hyperbolic" distances from P, P to Q(c t ') (Q not on

cone) are respectively:
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~? FIG. 12.

R = [c% te)2 - q -y)2 - (f-x)2] 1/2

R =fc2(A~t)2 _ (sI+y) 2 _ (f-X)27 1/2

Let DI, B1, be the respective interiors of the two cones for which

?> 0. Let s, -9 be the surfaces 1 -pand interior of the

cones; S2 = g2 the surface =0 and interior of the cones;

sj, s, the remaining "curved"' surfaces of tne cones. Let

g =.$ -f.S. be the total surfaces of the two'

f:'gures.
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Te two-space dimeihsional problem is

(B8) V(O)- ,)'-- ,f)e ) XY*-) = (initial conditions)

(boundary conditions)

Now Green's theorem is applied where satisfies 73 L= and
= V(_- / )  3 = (C-

giving

However

from Eq. BP and

// 3 .OC+ 2 ) eo~.d =c 0JP cii

from Eq. B3 and from the properties of the/'-function (duplication

formula). Tnus Eq. B1O becomes

S

Now = LO a,,A) from Eq. B4 so that Eq. Bll becomes

-e )
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Thus, the so.uion P(t, y, x) depends only on the values of r on

the boundaries of the cone D-. Since R = 0 on Sl , and with

the part of/ on S. vanishes, which is the reason for not express-J I

ing - on SI. On S, ---- and on S __ - . Then
1* C 2'~ 9

Eq. B12 becomes

(B13 I (.ff)

r r(83)/.Y) ff~ / i/f ' 4 -

The reflected cone will now be used but the solution has been

written in the form of Eq. B13 to call attention to the fact that

if the problem had no boundary conditions, and hence the cone were

not cut up Qj the surface = 0, the integral over S2 would not

occur and the solution f would be given completely by the initial

conditions which appear inff . In this case the reflected cone

would not be needed. However, the occurrence of mixed boundary
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conditions renders the reflected cone a useful device enabling one

to represent the so1ut on In %erms of one boundary value.

Since the initial conditions of Eq. B8 are zero, we have

from Eq. Bll

re ;W~

Using the reflected cone, one gets the analogous relationship

k- <

01 where Z

From the definitions of S2, 2 , R, and 1 it can be observed that

on S2 = S2 where , = 0, R = H and R = -R . Making these substi-

tutions in Eq. B15, and adding Eq. B14 and Eq. B15 gives

0~~ S2

Lemma: (=Othat is

r- J - '.

Of fU h.L < / £'. Jv4)t

Using this lemma, Eq. B17 becomes

/-.i - ff3
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which is the solution to the problem. For m = 3 the integral con-

verges so that by carrying out this iiiing process directly

yields

r __________

£2

Evaluation of this integral is usually very difficult and is not

considered here. It should be mentioned that in this evaluation,

with these mixed boundary conditions, the method developed by

J. C. Evvard (Ref. 5) may be used when the point P(ct, 0, x) is

in the "subsonic" region and only when y = 0.

THREE-SPACE DIMENSIONAL CASE

Notation:

IV V = entry velocity of body

c = velocity of sound in water

= density of water

= velocity potential

Z hydrodynamic pressure

x y FIG. 13.

Assumptions:

1. That entry velocity remains constant andV <<I.

2. That c and e remain constant.
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3. That flow is isentropic, hence inviscid.

4. That effects of splash and of gravitationwaves are ig-

nored, and the water surface remains plane.

5. That the body is very blunt at the poirt of impact: hence

the boundary conditions are applied on the water surface and not

on the surface of the body.

6. That perturbation velocities of the fluid are small so

that squares of these velocities are neglected.

The problem to be investigated is that of the flow pattern

and the hydrodynamic pressure induced by the body entering the

water. The investigation will treat only the first few moments

of contact and therefore only a small penetration of the body into

the water. Assumptions 4 and 5 are made for this purpose. In

particular, the pressure history, for the short interval considered,

is desired.

Sinne the w-ater is c=.pre3i13ie, vnis treatment differs from

the classical one which assumes an incompressible fluid.

The flow is initially irrotational and remains irrotational,

so that we may assume a velocity potential from which perturba-

tion velocities are given by u = vx, v = y, W = z.

From the equations of hydrodynamics which are linearized, by

neglecting squares of velocities and using the assumptions, the

following problem is obtained whose solution answers to the assump-

tions and description Pbove.
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t c 2 ( yy + Z,

?(x'Y''O) = 0 X2  + + 2 0 (initial conditions)

t(x,yB = 01
= )x 2 + =2< x(t)2)

(xO,,t) = V + 2 X(t)2 (boundary conditions)1 (x,o,,t) = o ,x2 + z2 > X(0)21

The expression X(t) describes the radius of the ring of con-

tact between the body and the plane water surface and may be deter-

mined from the geometry of the body. Hence x2 + &2,/ X(t)2 corre-

sponds to points on the body in the disturbed fluid surface and

x 2 + 02 >X(t)2 to potnts in the undisturbed surface. (Since

boundary conditions are applied on the fluid surface rather .&2

on the body surface, the problem is that of an expanding disk on

the surface, sending downward pulses corresponding to velocity V.)

The following definitions are needed:

Characteristic cone, vertex at P(x,y,O,ct):

"Reflected" cone, vertex at P(x,-y,a,ct):

"Hyperbol'c" distances from P, -to Q( ) ) are respec-

tively (

4c,



NAVORD REPORT 3523

The regions Dl, DI, S, S 9 S2 = $2 , 1, S! , B S + S! + S2 and

B K + S- + So are defined as in The two-dimensional case and

are described later (Fig. 14.).

Applying Green's theorem again where

and E74

one obtains

( 2o) 3(- -/ , ,
but

from Eq. B2 and

from Eq. B3 and from the properties of the/'7-function. Thus

Eq. B20 becomes
jN-2 9.6,,. -C ,

Now take mQ3. Since R = 0 on Sl so is _ and hence

On R, -- and on 62, . Hence Eq. B2

becomes
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(B22) .Z- C

Since the initial conditions are zero, the first integral vanishes

and Eq. B22 becomes

(B23)Sz

This process applied to the "reflected" cone gives

(let) --

From the definitions of S2, 32, R- , R on S2 = S2 where 0, R R

and - -. Making these substitutions in Eq. B24, and adding

Eq. B23 and Eq. B24 gives

IF 0C. 7 -- -2

(B25) 
Z

Using the lemma that 10 = 0 and Eq. B4, Eq. B25 becomes
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where the "surface" of integration, S21 is the volume bounded by
the surface- by

Again it can be seen that the solution is completely expressed

in terms of the boundary conditions (and initial conditions if

different from zero). In this case the integral in Eq. B26 di-

verges for m = 0. However, the factor preceding the integral was

constructed in such a manner that the existence of the limit is

insured.

Evaluation of this expression (Eq. B26) for P is quite in-
volved. The special point P (0,O,O,ct) in the supersonic region

can be treated quite simply by putting R =[C -A - -C

introducing polar coordinates in the (I ) plane, using the

symmetry of 2f-, namely D __(e6aS 9), se/7 1151)= YY~integrating

with respect to O , then with respebt top and finally letting

oe-p . However, in an attempt to be more general, mean values

will be used to express (x,y,z,t) for the general point P(x,y,z,c).

9-LI
For this purpose put _ /-) 2 II " /- for the

factor efore the integral in Eq. B26 and consider

(B"7) C-zL -,,-)J(;
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Since S2 is the "surface" = , introduction of the , -function

makes Eq. B2[ take the form

and by definition from Eq. 2, this can be written

Yzf b) (I Flo
(B29) I;j )--L .4 -  --

Now Eq. B5 provides a formula for If with which one can discuss

the mean value, m(e ), of the function f mentioned below.

Referring to Fig. l, one can make the following definitions:

( )' = E /)e~~ A/,c

from ) ,, to the "center line" of the cone D in the

plane constant.

(B30)

x= -'

For this problem M = and
r =~ X 7Lxj _Y ,j) / 7L -
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FIG. 14.

and Eq. B2 becomes

(,B32) . ' -/

However, .L gives the function inside the braces of Eq. B32 with

the argument replaced by one, by virtue of property 3 of R-L in-

tegrals. Putting 61= 1 one gets

which gives

(B33) I "'

4.5
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If the cone is generalized to m dimensions, it can be observed

that the locus of points r = constant,) = constant represents

the (m-2)-dimensional surface of an (m-l)-dimensional hypersphere I
con Ained in the (m-l)-dimensional hyperplane = constant whose

center is at the point ( X2 .X 1 1'wth 1_ /__- T__

Definition: The mean value of f is formed by integrating f

over the surface of this sphere and dividing by the area of the

surface.

By induction it can be shown that

r 2 7TV -=_ ,____

represents the volume of an (m-l)-dimensional sphere. This for-

mula holds for m = 3 (area of a circle) and m =4 (volume of an

ordinary sphere.)

Now assumc that the formula is valid for an (m-l)-dimensional

sphere and prove that it holds for an m-dimensional sphere. By

induction it will then hold for all dimensions. By the volume of

an m-dimensional sphere is meant the "area" of any cross section

multiplied by the elementary thickness and integrated throughout

this sphere (see Fig. 15). The area of this cross section is the

volame of the (m-l)-dimensional sphere. Thus
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II

FIG. 15.

Using Using the relation Cers6 W_ /7Z this becomes

(B34) (B34) V-, r 2271

which which has the same form as the formula for an (m-l)-dimensional

sphere sphere and the assertion is proven.

B, By considering the area as the radial derivative of the vol-

ume (ai ume (and putting m-I for - in Eq. B34 one gets for the area of

the (m the (m-2)-dimensional surface of an (m-l)-dimensional sphere

(B35) (B35) S =

j
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and by the above definition

(B36) 5.

where dw is the surface element of 'e (m-2)-dimensional surface

of the sphere whose center is the point (X'-X ") ) For

the present case n = 4, P = 1 (implying r = from Eq. B30) and

the center is the point (X)yg )ct-T),Then Eq. B36 becomes

V

r4j 7( xIe4r= f x ed

where use has been made of Eq. B35. Substituting this in Eq. B34

gives
6/-

(B37) 00 /

Applying this formula to Eq. B29 where - f eS )

the solution given by Eq. B24 then becomes

(B38) PAIyV b / i-/1
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Appendix C

INSTANTANEOUS PULSE STRENGTH

The potential -.quation is

A f/(Y,~i !)9c/4WA

A

Following Lagerstrom, pc coordinates are introduced (Fig. 16)

and

FIG.e 16
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For fixed z

r, Wr, = e/

hence the element of area is

The potential equation becomes

Differentiating with respect to -

Now, from

Therefore

but

Hence

Setting 7- 0 one obtains
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4+ (K,g6) = -2z ,y++

The instantaneous pulse strength is thus directly proportional

to
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Appendix D

LEGENDRE STANDARD FORM

The Legendre standard form of the elliptic integral of the

first kind

(Dl) T

This equation can be reduced to the Legendre standard form by the

following four transformations:

Transformation I

Let f = r-

Upon substitution into Eq. Dl and factooization of the expression

under the radical one obtains

(D2) e /l = q'€
-( r r 7l

where

-,

53



NAVORD REPORT 3523

Transformation 2

To rid the radical of odd powers of the variable of integra-

tion, the procedure outlined Ly Karman and Biot (Ref. 11, f0.

fourth-degree polynomi3l is followed, and the homographic trans-

formation made

This yields the integral

4- z:I J, ( ? - P)J

where L, . a ~' & )

and the requirement that odd powers of i-vanish determines p and

q as follows

where

Upon factoring one can rewrite the integral as follows

(D3) A- ,A.. j_ia_ y.k_ ,

where

/P
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= __ _ _ _ _ _ _

h. = ___- _ __ =

Transformation 3

Since o->I and >0 f 1 &'/),therefore I~-/>/Az/,

Following Karman and Biot, putting

__ _
'55

where C</; hence, Eq. D3 becomes

(D4) T -A ,

Transformation 4

Lastly, applying the transformation

/

EquatLIon D4 becomes

or, with the limits of integration
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where

7 ~) -- r92]') ()

Equation D5 is a complete elliptic integral of the first kind.
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NOMENCLATURE

A Area

a Radius of sphere

C, c Velocity of sound in water

F Surface of fluid struck by the body

F, F' Points on the -nit circle of Fig. 2

f Instantaneous pulse stx.ength

Mach n-ber

m Number of dimensions

P Field point

P, U: V Functions of the complex variable
P, U, v

p Pressure

R Hyperbolic distance

R(t) instantaneous radius of thc disk

k(t) Rate of growth of radius of wetted area

r A point on the disk

S Wetted surface of the body

S' Horizontal free surface of the liquid

t Fixed time

te Time at which rate of expansion of wetted surfaces is

sonic
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Velocity vector in flow field

V Normal velocity of disk

x Coordinate

9 Entry angle

f#,l Coordi.nte axis of the plane

47 -4CoordLnates of a variable point in space

Density of water

O- 16 Polar coordinates

2 Variable time

Velocity potential

Y Angle between BD and BF in Fig. 2
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